解三角形课件

时间:2025-04-14 作者:婉约派

相关推荐

解三角形课件(优选十篇)。

解三角形课件 篇1

教学目标:

1.经历从具体物体中抽象出角和三角形的过程,认识角和三角形,知道周角、平角及周角、平角、直角、钝角、锐角的大小关系。通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180。

2.结合实例,学会用量角器量角的度数,会画指定度数的角,并能用三角板画30、45、60、90度的角。能够按角的大小对三角形进行分类。在探索三角形分类和验证三角形的内和过程中,体验解决问题方法的多样性。

3.在观察、操作、验证等学习活动中,学习角与三角形的知识,发展空间观念,提高初步的推理能力。

4.能够自觉运用角和三角形的有关知识解决生活中的简单问题,体验角和三角形知识与日常生活的密切联系。

教学内容:

了解平角、周角,系统认识角,教的大小的比较,角的度量和分类,画角;三角形的认识及其特征,三角形的分类,三角形的内角和及三条边之间的关系。

教学重点:

全面认识角和三角形。

教学难点:

画角和三角形三边关系的探索。

教材分析:

本单元是在学生初步认识角和三角形的基础上进行上学习的,是今后进一步学习几何初步知识的基础。本单元教材的特点是

1.选取现实的物品作为素材,引发学生学习兴趣,体会图形与生活的密切联系。

2.创设多种感官参与的活动,调动学生自主探索的积极性。

3.内容的编排,符合学生的认知特点。

4.强化知识之间的内在联系。

教学措施:

1.灵活运用教材提供的素材,创设学生喜欢的现实情境。

2.要重视操作活动,引导学生形成正确的图形表象,发展空间观念。

3.科学组织探索活动,引导学生自主学习新知识。

4.沟通知识间的联系,构建良好的知识构建。

5.加强知识与生活的联系,体会体会数学学习的价值。

解三角形课件 篇2

各位评委、老师大家好:

我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。

一、设计理念:

数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。

应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。

我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

二、教材分析与处理:

三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

三、学生分析:

处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

四、教学目标:

1、知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

2、能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

3、德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

五、重难点的确立:

1、重点:三角形的内角和定理探究与证明。

2、难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

六、教法、学法和教学手段:

采用“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

七、教学过程设计:

(一)、创设情境,悬念引入

一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

(二)、探索新知

1、动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

(将拼图展示在黑板上)

2、尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

3、证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

4、学以致用,反馈练习

(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)

∴∠B+∠C=100°在△ABC中,

(2)已知:∠A=80°,∠B=52°,则∠C=?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)

又∵∠A=80°∠B=52°(已知)

∴∠C=48°

(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,则∠C=?

(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

解:设∠A=x°,则∠B=3x°,∠C=5x°

由三角形内角和定理得,x+3x+5x=180

解得,x=20

∴∠A=20°∠B=60°∠C=100°

(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

5、巩固提高,以生为本

(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用、能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

6、思维拓展,开放发散

如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

(三)、归纳总结,同化顺应

1、学生谈体会

2、教师总结,出示本节知识要点

3、教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

(四)、作业:

1、必做题:习题3、1第10、11、12题

2、选做题:习题3、1第13、14题

(五)、板书设计

三角形内角和

学生拼图展示

已知:

求证:

证明:

解三角形课件 篇3

教学建议

1.知识结构:

本小节主要学习的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

2.重点和难点分析:

教学重点和难点:直角三角形的解法.

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地的关键.

3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

锐角三角函数的定义:

实际上分别给了三个量的关系:a、b、c是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

如:已知直角三角形ABC中,,求BC边的长.

画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

.

即得BC的长为.

又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

也就是

这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

.

由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

4. 直角三角形的解法可以归纳为以下4种,列表如下:

5.注意非直角三角形问题向直角三角形问题的转化

由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过而获得解决.请看下例.

例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.

在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于D,在Rt中,有

又,在Rt中,有

又,

∴ 

于是,有

由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

6. 要善于把某些实际问题转化为问题.

很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为问题.

我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

另一条直角边为螺钉推进的距离,所以

设螺纹初始角为,则在Rt中,有

∴.

即,螺纹的初始角约为 .

这个例子说明,生产和生活中有很多实际问题都可以抽象为一个问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

一、教学目标 

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

二、重点·难点·疑点及解决办法

1.重点:直角三角形的解法。

2.难点:三角函数在中的灵活运用。

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

三、教学步骤 

(一)明确目标

1.在三角形中共有几个元素?

2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?

(1)边角之间关系

(2)三边之间关系

(勾股定理)

(3)锐角之间关系  。

以上三点正是的依据,通过复习,使学生便于应用。

(二)整体感知

教材在继锐角三角函数后安排,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——的知识来解决的。综上所述,一课在本章中是起到承上启下作用的重要一课。

(三)教学过程 

1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语 既可以使学生大概了解的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做)。

3.例题

【例1】  在中,为直角,所对的边分别为,且,解这个三角形。

的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。

解:(1),

(2),

(3)

完成之后引导学生小结“已知一边一角,如何?”

答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

【例2】  在Rt中,,解这个三角形。

在学生独立完成之后,选出最好方法,教师板书。

解:(1),

查表得;

(2)

(3),

∴。

注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。

4.巩固练习

是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练;练习2代入数据,培养学生运算能力。

[参考答案]

1.(1);

(2)由求出或;

(3),

或;

(4)或。

2.(1);

(2)。

说明:计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。

(四)总结扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。

2.幻灯片出示图表,请学生完成

四、布置作业 

教材P.32习题6.4A组3。

[参考答案]

3.;

五、板书设计 

解三角形课件 篇4

教学建议

1.知识结构:

本小节主要学习的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

2.重点和难点分析:

教学重点和难点:直角三角形的解法.

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地的关键.

3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

锐角三角函数的定义:

实际上分别给了三个量的关系:a、b、c是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

如:已知直角三角形ABC中,,求BC边的长.

画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

.

即得BC的长为.

又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

也就是

这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

.

由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

4. 直角三角形的解法可以归纳为以下4种,列表如下:

5.注意非直角三角形问题向直角三角形问题的转化

由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过而获得解决.请看下例.

例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.

在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于D,在Rt中,有

又,在Rt中,有

又,

∴ 

于是,有

由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

6. 要善于把某些实际问题转化为问题.

很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为问题.

我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

另一条直角边为螺钉推进的距离,所以

设螺纹初始角为,则在Rt中,有

∴.

即,螺纹的初始角约为 .

这个例子说明,生产和生活中有很多实际问题都可以抽象为一个问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

一、教学目标

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

二、重点·难点·疑点及解决办法

1.重点:直角三角形的解法。

2.难点:三角函数在中的灵活运用。

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

三、教学步骤

(一)明确目标

1.在三角形中共有几个元素?

2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?

(1)边角之间关系

(2)三边之间关系

(勾股定理)

(3)锐角之间关系  。

以上三点正是的依据,通过复习,使学生便于应用。

(二)整体感知

教材在继锐角三角函数后安排,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——的知识来解决的。综上所述,一课在本章中是起到承上启下作用的重要一课。

(三)教学过程

1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语 既可以使学生大概了解的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做)。

3.例题

【例1】 

中,为直角,所对的边分别为,且,解这个三角形。

的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。

解:(1),

(2),

(3)

完成之后引导学生小结“已知一边一角,如何?”

答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

【例2】  在Rt中,,解这个三角形。

在学生独立完成之后,选出最好方法,教师板书

解:(1),

查表得;

(2)

(3),

∴。

注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。

4.巩固练习

是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练;练习2代入数据,培养学生运算能力。

[参考答案]

1.(1);

(2)由求出或;

(3),

或;

(4)或。

2.(1);

(2)。

说明:计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。

(四)总结扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。

2.幻灯片出示图表,请学生完成

四、布置作业 

教材P.32习题6.4A组3。

[参考答案]

3.;

五、板书设计

解三角形课件 篇5

教学建议

1.知识结构:

本小节主要学习的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

2.重点和难点分析:

教学重点和难点:直角三角形的解法.

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地的关键.

3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

锐角三角函数的定义:

实际上分别给了三个量的关系:a、b、c是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

如:已知直角三角形ABC中,,求BC边的长.

画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

.

即得BC的长为.

又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

也就是

这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

.

由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

4. 直角三角形的解法可以归纳为以下4种,列表如下:

5.注意非直角三角形问题向直角三角形问题的转化

由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过而获得解决.请看下例.

例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.

在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于D,在Rt中,有

又,在Rt中,有

又,

∴ 

于是,有

由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

6. 要善于把某些实际问题转化为问题.

很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为问题.

我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

另一条直角边为螺钉推进的距离,所以

设螺纹初始角为,则在Rt中,有

∴.

即,螺纹的初始角约为 .

这个例子说明,生产和生活中有很多实际问题都可以抽象为一个问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

第 1 2 页  

解三角形课件 篇6

一、教材分析

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在rt⊿abc中sina= ,sinb= ,sinc= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的rt⊿abc不小心写成了锐角⊿abc,其它没有变,你说这个结论还成立吗?

[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿abc改为角钝角⊿abc,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

[设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10XX年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

[设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

[设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿abc中,已知a=30º,b=75º,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

[设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿abc中a=20cm,b=28cm,a=30º,解三角形。

[设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

[设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1.1a组第1题。

2、学有余力的同学探究10页b组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是r,则a=2rsina,b=2rsinb, c=2rsinc

[设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

(七)板书设计:(略)

解三角形课件 篇7

教学目标

一、知识与技能

1.理解三角形内角和定理及其验证方法,能够运用其解决一些简单问题;

2.掌握三角形按边分类方法,能够判定三角形是否为特殊的三角形;

3.掌握三角形的中线、角平分线、高的定义;

二、过程与方法

1.经历观察、操作、想象、推理、交流等活动,进一步发展推理能力和有条理表达的能力;

2.经历探索三角形的中线、角平分线和高线,并能够对其进行简单的应用;

三、情感态度和价值观

1.激发学生学习数学的兴趣,认识三角形的中线、角平分线和高线;

2.使学生在积极参与探索、交流的数学活动中,进一步体验数学与实际生活的密切联系;

教学重点

探索并掌握三角形三边之间的关系,能够运用三角形的三边关系解决问题;

教学难点

理解直角三角形的相关性质并能够运用其解决问题;

教学方法

引导发现法、启发猜想

课前准备

教师准备

课件、多媒体

学生准备

练习本;

课时安排

3课时

教学过程

一、导入

在生活中,三角形是非常普通的图形之一. 你能在下面的图中找出三角形吗?

二、新课

观察下面的屋顶框架图:

(1)你能从图 4-1 中找出 4 个不同的三角形吗?

(2)这些三角形有什么共同的特点?

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形 . 三角形有三条边、 三个内角和三个顶点.“三角形” 可以用符号“△”表示,如图 4-2 中顶点是 A,B,C 的三角形, 记作“△ABC ” .

下面哪一幅图是三角形?

△ABC 的三边,有时也用 a,b,c 来表示. 如图 3-3 中,顶点 A 所对的边 BC 用 a 表示,边AC、边 AB 分别用 b,c 来表示. 我们知道,将一个三角形的三个角撕下来,拼在一起,可以得到三角形的内角和为180°. 小明只撕下三角形的一个角,也得到了上面的结论,他是这样做的:

(1)如图 4-4所示,剪一个三角形纸片,它的三个内角分别为 ∠ 1,∠ 2 和 ∠ 3.

(2)将 ∠ 1 撕下,按图 4-5 所示进行摆放,其中∠1 的顶点与 ∠2 的顶点重合,它的一条边与∠2的一条边重合. 此时 ∠1 的另一条边 b 与∠3 的一条边a 平行吗?为什么?

(3)如图 4-6 所示,将∠3 与∠2 的公共边延长,它与 b 所夹的角为 ∠4.∠3 与∠4 的大小有什么关系?为什么?

三、习题

1.下图中,△ABC 的 BC 边上的高画得对吗?若不对,请改正.

四、拓展

1.一块三角形的煎饼,要把它分成大小相同的6块应怎样分?你有多少种分法?如果限定只能切三刀呢?

五、小结

通过本节课的内容,你有哪些收获?

1.知道三角形的定义、三角形的内角和,会对三角形进行分类;

2.三角形的中线、角平分线、高线的定义和性质.

解三角形课件 篇8

教材地位与作用:

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

学情分析:

作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)

教学目标分析:

知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

教法学法分析:

教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

教学过程

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△abc中,已知下列条件,解三角形.

(1)a=45°,c=30°,c=10cm(2)a=60°,b=45°,c=20cm

2.在△abc中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,b=30°(2)c=54cm,b=39cm,c=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

(九)作业布置

p10习题1.1a组习题1。

解三角形课件 篇9

1、四边形的面积公式

⑴、S□ABCD=a·h

⑵、S菱形=1/2a·b(a、b为对角线)

⑶、S梯形=1/2(a+b)·h=m·h(m为中位线)

2、三角形的面积公式

⑴、S△=1/2·a·h

⑵、S△=1/2·P·r(P为三角形周长,r为三角形内切圆的`半径)

3、S正多边形=1/2·Pn·rn=1/2·nan·rn

4、S圆=πR2

5、S扇形=nπ=1/2LR

6、S弓形=S扇-S△

解三角形课件 篇10

空间几何体的类型

1、多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的'公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2、旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。

高中数学知识点:几种空间几何体的结构特征

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱的面积和体积公式

S直棱柱侧面=c·h(c为底面周长,h为棱柱的高)

S直棱柱全=c·h+2S底

V棱柱=S底·h

空间几何体体积计算公式

1、长方体体积

V=abc=Sh

2、柱体体积

所有柱体

V=Sh、即柱体的体积等于它的底面积S和高h的积、

圆柱

V=πr2h、

3、棱锥

V=1/3xSh

4、圆锥

V=1/3xπr2h

5、棱台

V=1/3xh(S+(√SS)+S)

6、圆台

V=1/3xπh(r2+rr+r2)

7、球

V=4/3xπR3

本文来源:http://www.wyp772.com/w/52790.html